Расчет теплообменных аппаратов в пищевых производствах

3.9.2.

Расчет теплообменных аппаратов в пищевых производствах

Различают проектный и поверочный расчеты теплообменников. Целью проектного расчета является определение необходимой поверхности теплообмена и режима работы теплообменника для обеспечения заданного переноса теплоты от одного теплоносителя другому. Задачей поверочного расчета является определение количества передаваемой теплоты и конечных температур теплоносителей в данном теплообменнике с известной поверхностью теплообмена при заданных условиях его работы. Эти расчеты основываются на использовании уравнения теплопередачи и тепловых балансов.

Исходными данными для проектного расчета чаще всего являются: G – расход одного или обоих (G, D) теплоносителей, кг/с; Тн, Тк – начальная и конечная температуры, К; р – давление сред; с,m,r - теплоемкость, вязкость и плотность теплоносителей (эти величины могут быть не заданы, тогда их следует определять из справочной литературы). Кроме того, часто указывается и тип проектируемого теплообменника. Если нет, то необходимо сначала провести технико-экономическое обоснование выбранного типа.

Задачей проектного теплового расчета теплообменника является определение поверхности теплообмена в результате совместного решения интегрального уравнения теплопередачи и уравнений тепловых балансов:

Если теплоносители изменяют агрегатное состояние в процессе теплообмена, расчет тепловой нагрузки (удельного теплового потока) производится через энтальпии:

,

где Gтг , Gтх – массовые расходы горячего и холодного теплоносителей, кг/с; ,h¢¢ - коэффициенты (КПД), учитывающие потери (приток) тепла в теплообменных аппаратах.

Значения физических констант свойств теплоносителей можно принимать как среднеинтегральные величины, если в рассматриваемом интервале температур их нельзя считать постоянными. С некоторым приближением (что на практике чаще и делают) расчетное значение теплоемкости можно брать как истинное значение сp при средней температуре теплоносителя либо как среднее арифметическое истинных теплоемкостей при конечных температурах.

Значение коэффициентов h наиболее точно определяют опытным или расчетным путем. Из промышленной практики известно, что для теплообменников потери тепла в окружающую среду обычно невелики и составляют 2–3% от общего переданного тепла. Поэтому в приближенных расчетах можно принять h = 0,97–0,98.

Уравнения тепловых балансов служат для нахождения расходов теплоносителей или их конечных температур. Если ни то, ни другое не задано, то, как правило, задаются начальными и конечными значениями температур теплоносителей с таким расчетом, чтобы минимальная разность температур между теплоносителями была не менее 5–7К. Поверхность теплообмена определяют из основного уравнения теплопередачи, предварительно задавшись ориентировочным значением коэффициента теплопередачи.

Расчет температурного напора состоит в определении средней разности температур DТср и вычислении средних температур теплоносителей Тср и qср:

.

При определении DТср сначала устанавливают характер изменения температур теплоносителей и выбирают схему их движения, стремясь обеспечить как можно большее значение среднего температурного напора. С точки зрения условий теплообмена наиболее выгодна противоточная схема, которая не всегда может быть осуществлена на практике (например, если конечная температура одного из теплоносителей по технологическим соображениям не должна превышать определенного значения, то часто выбирают прямоток).

Смешанная и перекрестная схемы движения (наиболее часто встречающиеся в практике) занимают промежуточное положение между прямотоком и противотоком. Вычисление DТср, DТб, DТм для указанных схем связано с определенными трудностями. В литературе известны формулы для вычисления DТср при смешанном и перекрестном токе, которые однако сложны, громоздки и поэтому неудобны.

При выполнении тепловых расчетов трубчатых теплообменных аппаратов коэффициент теплопередачи обычно определяется по формулам для плоской стенки:

,

где aг, ax - коэффициенты теплоотдачи от горячего теплоносителя к стенке и от стенки к холодному теплоносителю, соответственно.

Это не вносит больших погрешностей и вместе с тем значительно упрощает расчет. Исключение составляют ребристые поверхности и толстостенные гладкие трубы, у которых dн/dвн>2,0. Во избежание погрешностей расчет их по формулам для плоской стенки проводить не рекомендуется.

Уравнение для расчета коэффициента теплопередачи выражает принцип аддитивности термических сопротивлений при передаче тепла через стенку. Понятие о термическом сопротивлении введено для лучшего представления процесса теплообмена и удобства оперирования величинами сопротивлений при сложных тепловых расчетах. В частности, всегда следует помнить, что, исходя из принципа аддитивности, величина k будет всегда меньше наименьшего значения a (это условие является критерием проверки правильности сделанных вычислений, а также указывает на способы повышения интенсивности теплообмена; следует стремиться повысить меньшее значение a). Кроме того, при расчетах параметра k следует ориентироваться на опытные значения.

При проектировании новых теплообменных аппаратов обязательно нужно учесть возможность загрязнения теплообменной поверхности и принять соответствующий запас. Учет загрязнения поверхности производят двумя способами: либо путем введения так называемого коэффициента загрязнений h3 , на который умножается коэффициент теплопередачи, рассчитанный для чистых труб:

0,65¸0,85,

либо путем введения термических сопротивлений загрязнений:

,

где R1 R2 - термические сопротивления загрязнений с наружной и внутренней поверхностей теплообмена, которые выбираются по практическим данным, приведенным в справочной литературе.

Коэффициенты теплоотдачи, входящие в уравнения, определяются из критериальных выражений вида

,

где ; l – определяющий размер, w – скорость теплоносителя; с, m, l - теплоемкость, вязкость, теплопроводность теплоносителя; b - коэффициент объемного расширения, DТ - локальный температурный напор.

Конкретный вид критериального уравнения зависит от условий рассматриваемой задачи (нагревание, охлаждение, конденсация, кипение), режимов течения теплоносителей, типа и конструкции теплообменного аппарата.

При подборе стандартизированного теплообменника задаются ориентировочным значением коэффициента теплопередачи К. Затем по справочникам подбирают теплообменник и далее проводят расчет поверхности теплопередачи по рассмотренной схеме. При удовлетворительном совпадении расчета площади теплообмена тепловой расчет теплообменника заканчивают и переходят к его гидравлическому расчету, целью которого является определение гидравлического сопротивления теплообменника.

Поверочный расчет теплообменника с известной поверхностью теплопередачи заключается, как правило, в определении количества передаваемой теплоты и конечных температур теплоносителей при их заданных начальных значениях и заданных расходах. Необходимость в таком расчете может возникнуть, например, если в результате проектного расчета был выбран нормализованный аппарат со значительным запасом поверхности, а также при проектировании сложных последовательно-параллельных схем соединения стандартных теплообменников. Поверочные расчеты могут понадобиться также для выявления возможностей имеющегося аппарата при переходе к другим (отличным от проекта) режимам работы.

3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников в пищевых производствах

При подборе и проектировании поверхностных теплообменников выбор конструкции теплообменника приобретает важнейшее значение. Следует учитывать ряд требований, которым должен удовлетворять данный теплообменник. Эти требования зависят от конкретных условий протекания процесса теплообмена, к которым прежде всего следует отнести величину тепловой нагрузки аппарата, агрегатное состояние и физико-химические свойства теплоносителей (вязкость и др.), их агрегативность, температуру и давление в аппарате, условия теплопереноса (гидродинамические режимы, соотношения между коэффициентами теплоотдачи по обе стороны стенки и др.), возможность создания чистого противотока, если температуры теплоносителей в процессе теплопереноса заметно изменяются, возможность загрязнения поверхностей теплообмена (если таковая существует, то желательно, чтобы поверхность была доступной для периодической чистки) и др. Кроме того, теплообменник должен быть как можно более прост по устройству, компактен, с малой металлоемкостью и т. п. Конструкции теплообменника, который бы удовлетворял всем названным требованиям, нет. Поэтому в каждом конкретном случае теплообмена приходится ограничиваться выбором наиболее подходящей конструкции.

При выборе теплообменника следует учитывать положения, которые существенно влияют на интенсивность теплообмена, размеры теплообменника и условия его эксплуатации, важнейшими из которых являются следующие.

Для получения высоких значений коэффициентов теплопередачи теплоносители должны иметь достаточно большие скорости. Однако с ростом скорости растут гидравлические сопротивления. Из практики следует, что приемлемые значения коэффициентов теплоотдачи можно получить при скоростях для жидкостей до 1—1,5 м/с и для газов до 10—25 м/с.

Необходимо знать, что увеличение скорости одного из теплоносителей приводит к заметному повышению коэффициента теплопередачи только в том случае, если коэффициент теплоотдачи с другой стороны стенки большой (т. е. является нелимитирующим), а термическое сопротивление стенки мало. Поскольку массовые расходы теплоносителей связаны с тепловым и материальным балансами теплообменника, то на линейную скорость теплоносителей в аппарате можно повлиять только подбором в нем соответствующих сечений.

В некоторых случаях коэффициент теплопередачи может зависеть только от термических сопротивлений загрязнений на стенке. При большом загрязнении увеличение скорости теплоносителя практически не приводит к существенной интенсификации теплопереноса, однако увеличивает затраты энергии на прокачивание теплоносителя через аппарат.

В то же время нужно помнить, что чем выше скорости теплоносителей, тем медленнее происходит отложение накипи и загрязнений на поверхности теплопередающих стенок теплообменников. Таким образом, задача выбора рациональных скоростей теплоносителей может быть решена только путем проведения оптимизационного расчета на основе сопоставления некоторого числа вариантов.

Важно правильно определить место ввода теплоносителей в теплообменник. При проектировании кожухотрубчатых теплообменников теплоноситель с меньшим коэффициентом теплоотдачи для увеличения скорости следует пропускать по трубам, так как сечение труб меньше сечения межтрубного пространства. Теплоноситель с высоким давлением направляют в трубы, чтобы не подвергать менее прочный кожух воздействию повышенных напряжений.

В трубы направляют также теплоноситель, вызывающий коррозию, и кожух при этом может быть изготовлен из более дешевого материала.

Для снижения тепловых потерь в нагревателях более горячий теплоноситель направляют в трубы, в холодильниках - в межтрубное пространство, что способствует более интенсивному охлаждению за счет потерь теплоты в окружающую среду.

Загрязненные теплоносители подаются с той стороны поверхности теплообмена, которую проще чистить.

Была ли эта страница вам полезна?
Да!Нет
9 посетителей считают эту страницу полезной.
Большое спасибо!
Ваше мнение очень важно для нас.

Нет комментариевНе стесняйтесь поделиться с нами вашим ценным мнением.

Текст

Политика конфиденциальности